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The orientation-strain behaviour typical of non-crystalline polymers is examined with reference to new 
techniques for determining molecular orientation parameters in a variety of crosslinked and thermoplastic 
materials, as well as the long-established methods based on the optical anisotropy of natural rubber. It is 
shown that the affinely-deforming 'random chain' assumed by conventional theory is not successful in 
predicting the relationship between chain orientation and strain unless the network is assumed to change 
significantly with strain. The implications of this observation are discussed in terms of the behaviour of 
crosslinks and entanglements: the conventional view of anisotropy needs to be supplemented by an approach 
in which orientation and strain are seen as distinct aspects of a polymer's response to the stress imposed upon 
it. 
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MOLECULAR ORIENTATION IN RUBBER-LIKE 
POLYMERS 

Our understanding of the development of molecular 
orientation in non-crystalline polymers owes much 
to early advances in the theory of rubber-like 
elasticity, commencing with the work of Kuhn and 
Grfin 1-3 and engagingly described by Treloar 4. This 
statistical theory of entropy-driven elasticity and con- 
sequent optical anisotropy was based upon the concept of 
a random chain of n links undergoing affine deformation 
(i.e. as if the chain ends were embedded in an elastic 
continuum). The polymeric system is taken to comprise a 
network of such chains, joined by permanent chemical 
crosslinks, with overall properties obtainable by simply 
summing the contributions of the individual chains. This 
is equivalent to saying that intermolecular interactions are 
of negligible consequence in comparison to intramolecular 
effects. The slightly later approaches involving a network 
of 'phantom chains '5'6 start from somewhat different 
assumptions but lead to similar results: the equations for 
stress-strain behaviour differ only by a small numerical 
factor, and the prediction is made that the mean positions 
of chain junctions will indeed change affinely with strain. 

This view of rubbery elasticity and anisotropy largely 
took shape in a period when the ranges both of known 
polymers and of available techniques were restricted. It 
was thus inevitable that early comparisons between 
theory and experiment centred upon the optical aniso- 
tropy or birefringence (A/~) of natural rubber (cis- 
polyisoprene)7- t t and of closely-related materials such as 
gutta-percha (trans.polyisoprene)9,to and polyeth- 
ylene l°'t2. In more recent years a variety of spectro- 
scopic techniques has become available, encompassing 
infra-red dichroism, laser-Raman spectroscopy, nuclear 
magnetic resonance (n.m.r.) spectroscopy, polarized 
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fluorescence, and wide-angle X-ray scattering (WAXS). 
The essential features of each technique have been 
reviewed elsewhere 13-15. 

The value of these newer techniques may be appre- 
ciated by considering the orientation distribution func- 
tion p(4') for molecular units aligned about a unique axis 
(we take uniaxial symmetry for simplicity). Here, p(4')d4' 
represents the fraction of units whose individual axes or 
'directors' lie at angles in the range 4' to ~ + d~b to the 
unique axis, typically a fibre draw direction, p(~b) may be 
expressed as an infinite series of terms in powers of cos q~: 

p(4,) = ~ (n +½X P.(cos 4')) t'.(cos 4') 
n=O 

where the coefficients P, are Legendre polynomials. The 
angle brackets denote mean values, so that (P,(cos q~)) 
represents the amplitude of the function P,. Only the 
terms in the series with even n are non-zero. Such an 
expression amounts to the analysis of the function p(~b) 
into spherical harmonics, much as the waveform can be 
analysed into Fourier components. 

The newer techniques for orientation determination 
afford an advance over optical birefringence in three 
significant respects. Firstly, birefringence is simply pro- 
portional to ( P2> " it thus yields only the first term in the 
series, albeit the most important one. Other methods in 
principle allow several terms to be determined. Secondly, 
birefringence measurements under load are complicated 
by the possibility that part of the measured anisotropy 
corresponds to stress birefringence (i.e. due to the distor- 
tion ofintermolecular and intramolecular spacings, or the 
rotation of pendant groups, by the applied stress) rather 
than resulting from chain orientation. Newer techniques 
avoid this difficulty. Thirdly, such techniques provide 
absolute values o f ( P , ) ,  while birefringence affords only a 
relative measure of  (P2).  If the maximum possible 
orientational birefringence can be calculated--the so- 
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called intrinsic birefringence, A#0, corresponding to the 
hypothetical situation where all orienting units in the 
system are perfectly aligned with the unique axis--then 
the utility of birefringence data is greatly enhanced. By o.2 
correlating spectroscopic and optical measurements, a 
value for A/~ o can indeed be deduced. 

The availability of a range of synthetic thermoplastics 
has also afforded an advance in the understanding of tx 
orientation. Many have glass transitions somewhat above aY 
room temperature, allowing measurements to be made ,, 

O.I after quenching from the rubbery regime (which for a 
thermoplastic implies, of course, rubberlike within the 
experimental timescale) to room temperature and unload- 
ing, avoiding complications due to stress birefringence 
and allowing easy comparison with measurements on 
specimens deformed in the glassy state. 

Arguably the most powerful of the newer techniques is 
that of WAXS 16'17. In principle it allows values of any of 
the (P , )  to be obtained (though in practice terms beyond 
(P4) are usually smaller in magnitude than the range of 
error in their determination). Furthermore, the method 
does not require that a particular conformational model 
be assumed first: it is possible within the same experiment i .0 
both to determine the probable molecular conformation 
(including any propensity to change in conformation with 
strain) and to monitor the development of orientation. 
The method is discussed in detail elsewhere18'~9: in 
particular, it has been employed to build up a detailed 
understanding of the structure and orientational be- 
haviour of poly(methyl methacrylate) (PMMA). 

Figure I shows data for the development of orientation 
in natural rubber. The birefringence data show the well- 
known upward curvature predicted by conventional 
rubber elasticity theory 4'7. However, the absence of such a " ~ 0.5 
pronounced trend in the WAXS data (which refer only to v 
the non-crystalline component of the material), and the 
fact that only the 20°C WAXS data show any noticeable 
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F i g u r e  1 Orientation parameter (P2)  vs. extension ratio ;~ for cis- 
polyisoprene (natural rubber). Data: (O) birefringence, 25°C a assuming 
A/to =0.202°; (O) WAXS, 20°C2°; ((D) WAXS 56°C 2° 
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F i g u r e  2 Orientat ion parameter (  P2} vs. extension rat io 2 for  P M M A  
above its glass transition. Data f rom wide-angle X-ray scattering 
(WAXS): (O)  plane strain compression, 125°C16.21; ( 0 )  plane strain 
compression, 150°C16.2 t ; (O)  uniaxial  tension, 150°C 22 
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F i g u r e  3 Orientation parameter (P2)  vs. extension ratio 2 for PET 
drawn at 80°C: data from several techniques: (O) birefringence2a; (O) 
birefringence24; (V) polarized fluorescence2S; (/k) polarized fluores- 
cence26; ([3) laser-Raman spectroscopy, 1616cm -1 line (ref. 27, 
'conformational model B') 

curvature at all, lend weight to the possibility that the 
curvature is largely associated with strain-induced crys- 
tallization. This phenomenon will be particularly evident 
at lower temperatures and will add significantly to the 
(P2~ measured by optical methods. 

In PMMA, a polymer showing no evidence of crystalli- 
zation, such an upward curvature is absent (Figure 2): 
indeed, the data show if anything a downward curvature, 
the slope decreasing at higher strains. The overall slope is 
considerably greater than for natural rubber, however. 
Data for poly(ethylene terephthalate) (PET) drawn 
slightly above its glass transition show a still greater slope: 
Figure 3 depicts data obtained by several methods and 
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showing excellent agreement between the different 
techniques. Orientation-strain studies of PVC indicate a 
still steeper (P2)  vs. strain plot, but although it is claimed 
that the material used is of zero or very low crystallinity 2s, 
a question remains as to the extent to which this 
behaviour is a reflection of microcrystallite orientation. 
This possibility is underlined by the minor nature of any 
changes seen on passing through the glass transition 
(about 81°C). Figure 4 depicts data for a range of 
temperatures above and below T s. 

In predicting the orientation behaviour of a material 
displaying rubberlike elasticity, the affine model is quite 
unambiguous in indicating that the gradient of the (P2)  - 
strain plot will steadily increase from a low value at zero 
strain (in the elementary Kuhn43run model, 0.6In where 
n is the number of links in the equivalent random chain), 
and that this curvature will be more rapid for smaller 
values of n. It is clear from the data shown above that 
while this prediction may be valid for natural rubber at 
room temperature (though perhaps less so than a con- 
sideration of birefringence data alone would suggest), it is 
inapplicable to some important thermoplastics. 

ORIENTATION BELOW THE GLASS 
TRANSITION 

A comprehensive view of deformation behaviour must 
naturally encompass both rubbery and glassy regimes. It 
is not usual to try to interpret glassy deformation in terms 
of an affine network--the development of orientation 
with strain is far too rapid for such an attempt to succeed, 
quite apart from the radically different stress-strain 
behaviour--but a related treatment has been considered. 
This is the pseudoaJfine deformation scheme, originally 
proposed by Kratky 31 and developed in detail by Ward 
and co-workers 32. 
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Figure 4 Orientation parameter (P2)  vs. extension ratio 2 for PVC. 
Data from birefringence: (O) 90°C29; (~ )  80°C3°; (~)  90°C3°; 
( 0 )  65°C2a; (4') 80°C28; (~lt) 95°C2S; ( ' )  ll0°C2a; (V) 125°C 2a 
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Figure 5 (P2)  and (P,~) as functions of extension ratio ~, according to 
the pseudoaffine deformation scheme 

The-pseudoaffine scheme describes the relationship 
between orientation and strain of rods of fixed length 
within an affinely deforming matrix (Figure 5), rather like 
needles in an affinely deforming haystack. Its primary 
application has been to the development of crystallite 
orientation, which it describes very satisfactorily; but the 
scheme has also been applied to orientation in polymer 
glasses, despite the obvious uncertainty as to the nature of 
the 'rods' in the glassy state. The pseudoaffine scheme 
describes the shape of the ( P2~-strain curve for a typical 
glassy polymer quite well (so it tends to fit birefringence- 
strain plots), but when absolute values of (P2) are 
available, e.g. for PET 33 and PMMA 22, it becomes clear 
that for a given strain the pseudoaffine model tends to 
predict too high a (P2~. It is not possible to adjust the 
scaling, since the model contains no adjustable para- 
meters. When higher order terms than ( P2~ are taken into 
account, the pseudoaffine model again appears less than 
satisfactory: it predicts values of(P4) very much in excess 
of those determined by WAXS or n.m.r, spectroscopy 
(though laser-Raman spectroscopy does predict rather 
higher values, closer to those of the pseudoaffine model). 

On a more fundamental level, the pseudoaffine model 
retains the foundation assumption of its affine counter- 
part that orientation can be regarded as a function of 
strain alone. This assumption is wrong, as annealing and 
recovery studies demonstrate 34. Finally, it is perhaps 
conceptually unsatisfactory that an approach to the 
glassy regime neglects the network nature of the system. 
Even below the glass transition a polymer remains an 
assemblage of entangled and perhaps crosslinked chains, 
and the importance of such a network picture has been 
clearly demonstrated by work on crazing in polymer 
glasses 35. 

Typical ( PE)-strain plots for non-crystalline polymers 
below Tg are shown in Figures 6 (for PMMA) and 7 (for 
PET). Plots relating to PVC are included in Figure 4, 
though the proviso above about possible microcrystallite 
orientation should again be noted. Figures 6 and 7 clearly 
show both the much higher chain orientation, as mea- 
sured by (P2) ,  associated with a given strain in a glass as 
compared to a rubber (cf. Figures 2 and 3), and the slight 
nature of any changes with temperature. However, Figure 
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Figure 6 (P2)  vs. extension ratio 2 for PMMA below T.. Data from 
WAXS 16.21 in plane st rain compression geometry: (O) 20°~; ( • )  40°C; 
(O) 60°C; (Vl) 80°C; (~)  100°C 
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Figure 7 (P2)  vs. extension ratio for PET drawn below T s (data from 
rcf. 33). Note that the vertical scale does not start at zero. Solid symbols 
refer to material of number-average molecular weight M n of 1400, open 
symbols to material of M n = 22 500. Temperature: (O,O) 60°C; ( 0 ,  O) 
20°C; (V) O°C; (&, /k)  -30°C;  (V'l) -60°C 

8, with data taken from the same WAXS investigations of 
PMMA as Figures 2 and 6, demonstrates that (P4>, the 
second term in the orientation distribution function, 
remains very low at all strains whether above or below the 
glass transition. Comparison with Figure 5 shows the 
contradiction which this represents with the prediction of 
the pseudoaffine model that ( P2> a n d  ( P , )  should be of 
comparable magnitude at all but the lowest strains. 

APPLYING THE AFFINE MODEL TO NON- 
CHEMICALLY CROSSLINKED MATERIALS 

The network chain in conventional rubber elasticity can 
be simply taken as the macromolecular chain segment 
between chemical crosslinks. With this view, and the 
assumption that network chains interact only via their 
crosslinks, the familar trend (characteristic of natural 
rubber) of a gradually accelerating curve of birefringence 
against strain may successfully be modelled along with the 
associated stress-strain behaviour. This success is 
achieved even without the introduction of a distribution 
of chain lengths such as would exist in practicable 
systems. 

The same approach can be applied to materials which 
have few or no permanent chemical crosslinks, but in 
which molecules are linked by mechanical entanglements. 
Such entanglements may be genuine topological 
linkages--for example interlocking closed loops--or 
more loosely-defined tangles where neighbouring chain 
segments interact sterically to impede relative motion. 
The latter will be transient, since the chains will be able to 
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Figure 8 Orientation parameter( P4> vs. extension ratio 2 for P M M A .  
Data from WAXS. (a) Above Tg: (O) plane strain compression, 
125°Ct6"2t; (Q) plane strain compression, 150°Ct6'2J; (<>) uniaxial 
tension, 150°C 2=. (b) Below Tg (all data refer to plane strain compre- 
ssion): (©) 2ooc; (e) 4o°c; (~>) 6o°c; (~) 8o°c; ~ )  lOO°C 
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disentangle themselves by reptation on a suitable time- 
scale; the former will be permanent, but will differ from 
chemical crosslinks in that the linkage cannot be as- 
sociated with a fixed point on the chain. Many systems 
will involve all these types of linkage, both chemical and 
mechanical. The significance of the mechanical links is not 
just that they add to the overall effective crosslink density, 
but that their contribution may be variable with stress, 
strain, strain rate, or temperature. The simpler picture of 
straightforward rubber elasticity may be seen as the 
limiting case in which chemical crosslinks are sufficiently 
numerous and effective to swamp any contributions of a 
mechanical nature. 

This rather broader view of an entangled and perhaps 
crosslinked network model enables one to take a second 
look at the available orientation-strain data and at the 
possibility of relating glassy to rubbery behaviour. In the 
basic affine model, the relationships between the (P2,) 
parameters and strain are dependent on only one para- 
meter, the number (n) of 'statistical random lines' per 
chain. A particularly useful way of examining experimen- 
tal ( P2> data is to take each data point and determine by 
an iterative method the n which an affine random chain 
model would require in order to predict a (P2) matching 
the experimental result. The n values so obtained can then 
be plotted against extension ratio 2: Figures 9-12 show 
this procedure applied to the ( P2)-strain data discussed 
above, The standard expressions for (P2) as a function of 
strain are confined to strains below an extension ratio of 
n 1/2, the limit of the affine model. If however one assumes 
that a chain, once fully extended, continues to rotate 
without further change in length, then it is possible to cope 
with data points which appear to lie beyond the n 1/2 limit. 
This approach involves assumptions which are strictly 
incompatible, but its proponents 36 argue that it affords a 
convenient mathematical device for dealing with high- 
strain data: we, in the same spirit, employ it for the 
purposes of Figures 9-12. 

Several features of the n vs. 2 plots are apparent. Firstly, 
there is a clear tendency for n to increase with strain, in an 
approximately linear fashion. The slope is particularly 
marked for rubbery thermoplastics, but is evident even in 
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Figure 10 n vs. extension ratio 2 for PMMA: WAXS data as in Figure 
2: (O) plane strain compression, 125°C; (0) plane strain compression, 
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Figure 11 n vs. extension ratio for PET: data as in Figure 3 

cis-polyisoprene, natural rubber. The downward de- 
viation from linearity in some of the plots for natural 
rubber - notably the trend in the birefringence-based data 
of Treloar 8 - may be accounted for by the onset of strain- 
induced crystallization2°: if this is so, the tendency is 
still more solidly based. 

Secondly, and again especially in the thermoplastics, n 
approaches so low a value at small strains that the 
admissibility of the statistical basis of conventional rub- 
ber elasticity theory becomes questionable, while the ratio 
of n at high strains to the zero-strain intercept becomes 
extremely large. 

Taken together, these observations demonstrate that if 
the affine model is to describe the relationship between 
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absolute orientation and strain, very considerable changes 
in the nature of the supposed random chain will be 
necessary--both in thermoplastics and to a lesser but 
significant extent in chemically crosslinked rubbers. 

INTERPRETATION 

It is clear from the evidence above that the application of a 
random chain model to thermoplastics demands some 
departure from the conventional picture of a statistical 
chain with a fixed number of equivalent random links. 
Some of the attractive simplicity of rubber elasticity 
theory will be lost, but this is perhaps an inevitable 
consequence of endeavouring to embrace not only a wide 
range of materials, but also the differing regimes of 
rubbery and glassy behaviour, within one conceptual 
framework. 

Three basic approaches to the problem can be iden- 
tified, representing successively more radical departures 
from the conventional picture of an affinely deforming 
random chain with fixed n. The purpose of the present 
discussion is not to establish a 'correct' one to the 
exclusion of others, for each has its value; but to outline 
how they enable orientation-strain data to be interpreted, 
and to identify some implications for the nature of the 
polymer chain and the interactions, both intermolecular 
and intramolecular, which affect its behaviour. 

The first approach is to allow the 'equivalent random 
link' to change--that is, to suppose that under approp- 
riate circumstances the real macromolecular chain be- 
comes less flexible, so that the freely-jointed random chain 
to which its behaviour may be compared is one with 
rather fewer and bigger links than before. This view is 
plausible enough when considering temperature-induced 
changes. It has long been used to describe, for example, 
the temperature dependence of birefringence in poly- 
ethylene37: the chains appear to stiffen with decreasing 
temperature. At constant temperature, however, the ap- 
proach is less satisfactory--it is difficult to see how the 
effective random link could decrease in size as strain 
increases, particularly if the changes required are to be as 
drastic as Figures 10 and 11 demand. Indeed, one might 
have anticipated that the size of the equivalent random 
link would increase (i.e. the chains stiffen) at high strains, 
as portions of the molecules become fully extended. 

Though this approach would allow any { P2)-strain 
plot to be fitted by an affine model (if one takes it far 
enough even an apparently pseudoaffine relationship 
could be described by very rapid changes with strain of 
the number of random links per network segment), there 
is little evidence that variations on a sufficiently extensive 
scale are occurring. It is true that limited conformational 
changes may accompany deformation (e.g. in PET24'38), 
but to account for apparent variations in n between, say, 
1-5 at low strains and 30-50 at high strains one would 
have to appeal to changes in chain stiffness as drastic as 
those associated with major transitions such as T r In 
PMMA, perhaps the best-characterized non-crystalline 
polymer from a structural viewpoint, significant confor- 
mational changes may be ruled out 39. 

The second approach is to suppose that the network 
points themselves are labile--so that the equivalent 
random link can remain of fixed size, while the number of 
them per chain segment (between effective crosslinks) 
varies. This would of course affect the number of chain 
segments per unit volume, N, and in terms of rubber 
elasticity theory an increasing n from this source would 
imply a proportionate, decrease in N and thus in the 
rubber modulus NkT. Nonetheless, the considerations 
above regarding mechanical entanglements (which will 
act as crosslinks) suggest that part, at least, of the 
mechanical contribution to the overall apparent crosslink 
density will be metastable. Even those mechanical tangles 
which for topological reasons cannot disappear entirely 
will nevertheless be able to move along the chain to some 
degree, along the lines of the slip-link representation of a 
confined polymer chain 4°. 

Treatments which fall within the scope of this second 
general approach have been set out by several authors. 
Raha and Bowden 41, in their studies of optical anisotropy 
in glassy PMMA, suggest that the density of 'cohesion 
points' (effective crosslinks) is a function both of tempera- 
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ture and of strain. They support this interpretation by 
pointing out that in PMMA 'cohesion points' may 
correspond to secondary valence bonds, which will clearly 
be less stable than true chemical crosslinks. The authors 
suggest however that after yield the polymer behaves with 
'rubber-like freedom'; they do not consider in detail how 
rubber-like deformation itself may be influenced by 
variations in apparent crosslink density. 

Raha and Bowden's concept of essentially electrostatic 
'cohesion points' is followed in part by Kahar and 
others '~2 in a later study of the stress-optical properties of 
PMMA. The latter authors supplement these cohesion 
points, however, by a 'permanent' (their quotation marks) 
network of entanglements which remains stable above Tg. 
They proceed to a phenomenological description of 
deformation and shrinkage behaviour, along the lines of 
the Mooney-Rivlin equation, and avoid proposing a 
specific molecular mechanism. More recently, Smith 43 
has developed a phenomenological model for the analysis 
of both birefringence and thermal expansivity data for 
deformed glassy polymers: his suggestion is that the 
entanglement network is stable up to extension ratios of 5 
to 6, and that entanglement slippage occurs at higher 
strains with the (perhaps unlikely) implication that further 
deformation destroys virtually all the entanglements: 

The third and perhaps most far-reaching approach 
arises from the realization that orientation is more than 
just a simple function of strain: chain alignment is for 
example more rapidly removed during annealing and 
relaxation than is overall deformation 34'42. To describe 
such differences adequately, orientation and strain must 
be 'decoupled', at least in part. 

One of the difficulties of conventional rubber elasticity 
is the inevitable fact that as deformation proceeds, some 
chains will begin to reach the maximum extension 
possible without backbone distortion. They will clearly 
no longer be able to behave affinely, irrespective of the 
conformations of their neighbours or of the macroscopic 
strain level. The various non-Gaussian versions of elas- 
ticity theory arrive at the n 1/2 limit for affine deformation 
by making, implicitly, the rather sweeping assumption 
that all chains reach this stage simultaneously. However, 
in a real network there will in fact be some chain segments 
which will be highly extended at the outset (there is a 
distribution of end-to-end lengths), and some which are 
short. The presence of these segments will bring about 
increasing deviations from affine behaviour, beginning at 
a very early stage in the straining process. 

The inevitable existence of very short chain segments 
led Dobson and Gordon 44 to consider separating the 
orientational and extensional entropy contributions of 
network chains. They regard very short chains (as short as 
1-2 backbone bonds) as orientationally but not exten- 
sionally active--i.e, their end-to-end vectors are capable 
of changing direction but cannot significantly change in 
length. A treatment taking into account the entropy 
contribution of these very short segments led to a stress- 
strain equation incorporating an additional term in 
comparison to the classical theory, and this additional 
term could be identified with the C 2 term of the well- 
known (but originally empirical) Mooney-Rivlin equa- 
tion, at least at strains below about 100% (extension ratio 
2 = 2). The authors point out that the mathematics in their 
derivation was in fact performed in early work by Kuhn 
and Grfin themselves, but was neglected in the develop- 

ment and refinement of rubber elasticity theory by later 
authors. 

Dobson and Gordon's 'orientationally active' chains 
were considered as short segments between chemical 
crosslinks, but a more general view is possible in which 
mechanical entanglements may also lead to portions of 
molecular chains having only limited scope for changes in 
length as distinct from direction. Any attempt to describe 
in detail the effect of these mechanically 'hindered' 
segments, together with the spectrum of behaviour be- 
tween the 'short-chain' and 'affine' extremes, would be 
extremely complex. Nevertheless, useful progress can be 
made with a very simple approach to the molecular 
networks as a whole. Brown and Windle have in- 
troduced a4 the concept of an 'average constraint' on the 
extensional part of the deformation process. As in Dobson 
and Gordon's work, the separation of orientational and 
extensional contributions to strain is taken as a foun- 
dation, but it is seen as applying to all the chains. On this 
basis a first-order model for rubberlike deformation can 
be set out, and such a model exhibits the appropriate 
characteristics of both stress-strain and orientation- 
strain behaviour. Differences in the orientational response 
among mechanically and/or chemically crosslinked sys- 
tems reflect the differing anisotropy of the orienting unit 
(typically some few repeat units in length) in each case. 
The introduction of a rate dependence, affecting the 
longer-range extensional component more strongly than 
the orientational component, leads to trends paralleling 
those observed on moving from true rubberlike defor- 
mation towards T~ and the glassy regime. As an example, 
Figure 13 illustrates the orientation-strain behaviour 
predicted by the Brown and Windle model in comparison 
to PET data discussed above. 

DISCUSSION 

We have considered a variety of possible models to 
account for the discrepancies between the classical view of 
rubber elasticity and the quantitative orientation-strain 
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behaviour of both crosslinked and uncrosslinked systems. 
It is perhaps salutary to see the number  of seemingly 
reasonable interpretations that may be placed upon the 
data. However, we must first consider the implications of 
the modifications that have been introduced into the basic 
affine type of model. The affine model is founded upon 
equilibrium thermodynamics:  while such a model may 
provide a starting point for consideration of orientation in 
uncrosslinked systems and glasses, one must also be 
prepared to take account of the influence of non- 
equilibrium conditions on deformation in these cases. The 
description of these aspects in terms of entanglements is 
an attractive proposition in many ways. However, such an 
approach requires a particular variation with strain in the 
network structure, while the configurations of the chains 
between crosslinks change in a genuinely affine manner. 
So, though perhaps useful as a first order approximation, 
this approach would appear to flout the precepts of the 
affine formulation. 

If we place some reliance upon the numerical values 
obtained for n, the number of statistical segments between 
effective crosslink points, then at moderate strains (say, of 
order 100%, i.e. 2=2)  the chain lengths between such 
points are broadly comparable to estimates of entangle- 
ment spacings derived from dynamic compliance 
measurements (e.g. ref. 46), while extrapolation of Figures 
9 - 1 2  to zero strain implies rather shorter chain lengths 
than these estimates would suggest. In making this 
comparison it must be remembered that the size of a 
statistical random link would be close to one monomer  
unit in a flexible molecule such as natural rubber*, and 
rather larger in a stiffer chain such as that of PMMA. 

The deformation of glasses might be thought to be 
dominated by interchain segmental interactions. In a 
rubber the level of such interchain interactions will 
naturally be less, but it would be reasonable to assume 
that the magnitude of the effects would be related to the 
aspect ratio or anisotropy of the chain segments. In this 
case we would expect greater perturbation of the affine 
model in the case of P M M A  or PET (aspect ratio of 2) 
than for the highly flexible chain of natural rubber. This 
trend is reflected in the steepness of the n versus strain 
curves for P M M A  or PET compared with natural rubber. 
In order to confirm these qualitative interpretations we 
require both  additional data and a more firmly based 
approach with which to handle entanglements (for 
example reference 40). 

An examination of deformation in a crosslinked system 
would obviously be facilitated by well characterized 
networks. The use of neutron scattering to monitor  the 
movement  of crosslink points would increase the number 
of different types of data available to fit the opposing 
models. However, this type of experimentation is clearly 
not possible in the thermoplastic polymers considered 
above, and therefore a wider range of studies needs to be 
considered, including the use of annealing and relaxation 
measurement. 

The studies detailed above indicate the utility of 
considering molecular orientation as an important com- 
ponent of any attempt to understand the deformation of 
polymeric systems, whether they be glassy or rubberlike. 
Such orientation studies need to be quantitative in origin, 
and to indicate, as wide-angle X-ray scattering measure- 
ments do, the nature of the orienting unit. However, these 
measurements will be to no avail unless existing and 

future deformation models predict orientation-strain 
relationships in addition to the familiar force-extension 
curves.  

A C K N O W L E D G E  MENTS 

The financial support  of 
acknowledged. 

the SERC is gratefully 

REFERENCES 

1 Kuhn, W. Kolloid Z. 1934, 68, 2 
2 Kuhn, W. Kolloid Z. 1936, 76, 258 
3 Kuhn, W. and Griin, H. Kolloid Z. 1942, 101, 248 
4 Treloar, L. R. G. 'The Physics of Rubber Elasticity' (3rd Edn.), 

Oxford Univ. Press, London, 1975 
5 James, H. M. and Guth, E. J. Chem. Phys. 1947, 15, 651 
6 Flory, P. J, Proc, Roy. Soc. London, Series A 1976, 351, 351 
7 Treloar, L. R. G. Trans. Faraday Soc. 1947, 43, 277 
8 Treloar, L. R. G. Trans. Faraday Soc. 1947, 43, 284 
9 Saunders, D. W. Trans. Faraday Soc. 1956, 52, 1414 

10 Saunders, D. W. Trans. Faraday Soc. 1957, 53, 860 
ll Saunders, D. W. Nature 1950, 165, 360 
12 Saunders, D. W. Trans. Faraday Soc. 1956, 52, 1425 
13 Wilkes, G. L. J. Macromol. Sci., Reo. Macromol. Chem. 1974, 10, 

149 
14 Ward, I, /~. (Ed.) 'Structure and Properties of Oriented Po- 

lymers', Appl. Sci. Pub., London, 1975 
15 May, M. J. Polym. Sci., Polym, Syrup. Edn. 1977, 58, 23 
16 Pick, M., Lovell, R. and Windle, A. H. Polymer 1980, 21, 1071 
17 Windle, A. H. in 'Developments in Oriented Polymers' (Ed. I. M. 

Ward), Applied Science Pub., London, 1982 
18 Mitchell, G. R. and Windle, A. H. Polymer 1983, 24, 285 
19 Mitchell, G. R. and Windle, A. H. Colloid Polym. Sci. 1982, 260, 

754 
20 Mitchell, G. R. Polymer 1984, 25, 1562 
21 Mitchell, G. R., Pick, M. and Windle, A. H. Polymer 1983, 24 

(Commun.), 16 
22 Brown, D. J. and Mitchell, G. R. J. Polym. Sci., Polym. Lett. Edn. 

1983, 21, 341 
23 Rietsch, F., DuckeR, R. A. and Ward, I. M. Polymer 1979, 20, 

1133 
24 Cunningham, A., Ward, I. M., Willis, H. A. and Zichy, V. Polymer 

1974, 15, 749 
25 Nobbs, J. H., Bower, D. I., Ward, I. M. and Patterson, D. Polymer 

1974, 15, 287 
26 Nobbs, J. H., Bower, D. I. and Ward, I. M. Polymer 1976, 17, 25 
27 Purvis, J. and Bower, D. I. J. Polym. Sci., Polym. Phys. Edn. 1976, 

14, 1461 
28 Hibi, S., Maeda, M., Kubota, H. and Miura, T. Polymer 1977, 18, 

137 and 143 
29 Rider, J. G. and Hargreaves, E. J. Phys. D. 1970, 3, 993 
30 Kashiwagi, M. and Ward, I. M. Polymer 1972, 13, 145 
31 Kratky, O. Kolloid Z. 1933, 64, 213 
32 Ward, I. M. 'Mechanical Properties of Solid Polymers', Wiley, 

N.Y., 1971 
33 Foot, J. S. and Ward, I. M. J. Mater. Sci. 1975, 10, 955 
34 Brown, D. J. and Windle, A. H. J. Mater. Sci. 1984,19, 1997, 2013 

and 2039 
35 Donald, A. M. and Kramer, E. J. J. Polym. Sci., Polym. Phys. Edn. 

1982, 20, 899 
36 Nobbs, J. H. and Bower, D. I. Polymer 1978, 19, 1100 
37 Volungis, R. J. and Stein, R. S. J. Chem. Phys. 1955, 23, 1179 
38 Cavanaugh, D. B. and Wang, C. H. J. Polym. Sci., Polym. Phys. 

Edn. 1981, 19, 1273 
39 Lovell, R. and Windle, A. H. Polymer 1979, 20, 175 
40 Ball, R. C., Doi, M., Edwards, S. F. and Warner, M. Polymer 1981, 

22, 1010 
41 Raha, S. and Bowden, P. B. Polymer 1972, 13, 174 
42 Kahar, S., DuckeR, R. A. and Ward, I. M. Polymer 1978, 19, 136 
43 Smith, K. J. Polym. Eng. Sci. 1984, 24, 205 
44 Dobson, G. R. and Gordon, M. Trans. Inst. Rubber Ind. 1964, 40, 

T262 
45 Ferry, J. D. 'Viscoelastic Properties of Polymers' (3rd Edn.), 

Wiley, New York, 1980, Ch. 13B 

1762 POLYMER, 1985, Vol 26, November 


